If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+6x=16
We move all terms to the left:
24x^2+6x-(16)=0
a = 24; b = 6; c = -16;
Δ = b2-4ac
Δ = 62-4·24·(-16)
Δ = 1572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1572}=\sqrt{4*393}=\sqrt{4}*\sqrt{393}=2\sqrt{393}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{393}}{2*24}=\frac{-6-2\sqrt{393}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{393}}{2*24}=\frac{-6+2\sqrt{393}}{48} $
| 3x+20=-22 | | -108=-5x-5x+2 | | 34=t+18 | | -4x+4=x-6 | | -2x-5=-x-8 | | 45-(y+4)=180 | | 8+9b=5+10b | | 17+0.7x=22+0.05 | | x/10-16=4 | | 6(0.5x-2)=x-0.25(16-4x) | | 33=−3(4x−3) | | n/1.5=n-12 | | (0.68x0.12)/(0.68x0.12)+(0.88X)=1 | | 10=-5w | | 14=4(x–2)+6–2x | | –0.9p+3.2=–1.7p | | -23=3y+1 | | -8x-4=5x+61 | | –10−8g=–9g | | 2+5t=6t | | 7−9m=–10m+1 | | 9(5s-2)-10(2s+7)=200s-3238 | | 4.25–0.25x=3.75x | | 5(x+3)=7x-6+11 | | -9x+10=-3x16 | | -6r+12-8r=+2 | | 130-w=193 | | 3(3n-2)-4(5n+2)=4n-44 | | -5x+12=6x+34 | | 3n=–2+2n | | 6x(4x+1)=16 | | –7p+4=–9p+10 |